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ABSTRACT

In this paper we address external calibration of distributed
multi-camera system intended for tracking and observing. We
present a robust and efficient method for wide area calibration
using virtual calibration object created by two LED markers.
Our algorithm does not require for all the cameras to share
common volume; only pairwise overlap is required. We as-
sume the cameras are internally calibrated prior to deploy-
ment. Calibration is performed by waiving the calibration bar
over the camera coverage area. The initial pose of the cameras
is calculated using essential matrix decompositions. Global
calibration is solved by automatically constructing weighted
vision graph and finding optimal transformation paths between
the cameras. In the optimization process, we introduce novel
parametrization for two-point calibration using direction nor-
mal. The results are increased accuracy and robustness of the
method under the presence of noise. In the paper, we present
experimental results on a synthetic and real camera setup. We
have performed image noise analysis on a synthetic wide-area
setup of 5 cameras. Finally, we present the results obtained
on a real setup with 12 cameras. The results obtained on the
real camera setup show that our approach compensates for er-
ror propagation when the path transformation includes two to
three nodes. No significant difference in reprojection error
was found between the cameras on non-direct and direct path
of the vision graph. The mean reprojection error for the real
cameras was below 0.4 pixels.

Index Terms— External camera calibration, vision graph,
multi-camera system, epipolar geometry

1. INTRODUCTION

Important step in deployment of multiple cameras is their lo-
calization. For many applications, only approximate position
and orientation of the camera are needed. Many researchers
have addressed the issue of localization using different tech-
niques, such as use of acoustic delays, radio frequency inten-
sity, image based localization and others. Required accuracy
of the camera localization depends on the application require-
ments.

However, many applications of tracking and observing
dynamic targets require multiple cameras to be accurately cal-

ibrated to a global coordinate system. Accurate calibration is
especially important in tracking of passive or active markers
using vision based methods for applications of virtual (VR) or
augmented reality (AR). Multiple cameras are used to track
small set of markers to calculate user’s body or head position
and/or orientation in real space and map it into the virtual
space.

Existing firewire cameras often used for such applications
can capture medium to high resolution images with 30-100
FPS, requiring high bandwidth for image transfer. The band-
width limitations restrict number of cameras used or lower the
resolution and frame rate of the transferred image data. With
the increasing power of microprocessors of smart cameras,
much of the processing needed for tracking applications can
be implemented on board of the cameras. Detected marker lo-
cations can be thus sent through the network to the processing
server. Such small packets allow high-speed transfer of data
from the smart camera also over wireless protocols allowing
more flexibility in camera arrangement.

To achieve proper mapping of 3D location from the phys-
ical space to the virtual space, accurate position and orienta-
tion of the cameras have to be known in addition to camera
internal parameters (i.e. focal length, image center, distor-
tion). The internal calibration can be performed in advance,
before the camera is deployed, while the external calibration
requires on-site localization.

In this paper we propose geometric calibration of multiple
cameras, which can be arranged over a wide area without im-
posed constraints for all cameras to share a common volume.
Our approach assumes that at least any two given cameras
overlap and that the cameras have been internally calibrated
prior to deployment. In our algorithm the cameras are exter-
nally calibrated using two moving LED markers positioned
at a fixed distance. The moving markers generate a virtual
calibration object in 3D space which is captured as a time
sequence. The use of virtual calibration object improves ro-
bustness of point detection and point correspondence between
cameras while reducing computational load on the capturing
side.

Global calibration is solved by constructing vision graph
and determining the optimal transformation paths from each
camera to the reference camera. Finally, the parameters are
optimized using sparse bundle adjustment implementation.
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We demonstrate the effectiveness of the proposed algorithm
on a set of regular cameras while considering implementa-
tion in the smart cameras. This paper is organized as follows.
In Section 2 we present some of the previous research in the
area of camera network calibration. Section 3 describes our
calibration approach. In Section 4 we present the results of
the calibration on a synthetic and real multi-camera setup. Fi-
nally, Section 5 concludes the paper with discussion on ad-
vantages and drawbacks of the presented calibration method.

2. RELATED WORK

Multiple camera calibration has been studied extensively in
the past decades. In this paper we review selected number of
studies related to our work. Calibration of distributed cam-
eras using image-based localization has been described by
Mantzel and colleagues [1], who calibrated a network of cam-
eras with sparse overlapping by acquiring planar checkerboard
images. They combined cameras with overlap into microclus-
ters and refined the localization error using planar metrics.
Their approach required checkerboard image to be fully visi-
ble simultaneously in several cameras. Similar approach was
applied by Olsen and Hoover [2] who calibrated a camera net-
work with small overlap in workspace using planar domino
grid.

In several studies, calibration targets have been substi-
tuted by the methods of self-calibration [3]. The calibration
is preformed by extracting feature points and matching corre-
sponding features between the cameras. In the case of self-
calibration, the internal parameters are optimized simultane-
ously with the external ones. The method, however, assumes
simplifications regarding the internal parameters, such as im-
age center location is set to the center of image, distortion of
the camera lens is omitted, etc. Cheng et al. [4] applied fea-
ture extraction from captured images of the environment to
recover the location of the cameras. The method detects natu-
ral features in a scene observed by several cameras and tries to
find matching features, i.e. same points seen by multiple cam-
eras. The main drawbacks of this algorithm are variability of
natural features in quantity and number and required proxim-
ity of cameras to allow detection of the same features in the
scene. The latter restriction prevents calibration between two
cameras facing opposite directions. Additionally, variability
of photometric parameters of the cameras can significantly
affect the accuracy and robustness of the feature detection al-
gorithms.

Several researchers have have shown high accuracy for
geometric calibration using one dimensional objects [5, 6, 7,
8]. Chen et al. [7] used iterative approach combined with
extended Kalman filtering of object motion to calibrate un-
synchronized cameras. Machacek et al. [6] suggested two-
step calibration of a stereo camera system in a large volume
where the internal parameters are first obtained with a calibra-
tion board, followed by the external calibration using a virtual

calibration object. The study showed that small adjustments
of lens focus, when cameras were deployed after the internal
calibration, did not significantly affect the accuracy of this
two-step calibration.

In our work we combine the idea of vision graphs for wide
area camera network with small working volume overlap and
calibration methods using virtual calibration object. Our al-
gorithm requires cameras to share workspace volume at least
pairwise. In contrast to other methods [7, 9] our approach re-
solves Euclidean reconstruction (preserving metric informa-
tion) and introduces novel parameters reduction in the case of
two-point bar calibration for multiple cameras as compared
to [6]. Our main contribution is the application of weighted
vision graph to determine the optimal transformation between
the cameras when using pairwise calibration. The weight of
the graph can comprise of number of common points between
camera pairs, distribution of image points, closeness to the
reference camera or a combination of several parameters.

3. PROPOSED METHOD

In our approach we use virtual calibration object defined by
two moving markers with fixed distance. The algorithm re-
quires for the cameras to at least pairwise share common vol-
ume. We assume that the cameras are synchronized. In case
of unsynchronized cameras, the approach described by Chen
et al. [7] can be applied. The calibration is two-step. First,
the cameras are internally calibrated using checkerboard and
well-known Tsai algorithm [10, 11]. In the second step, ex-
ternal calibration is performed to determine 6 external param-
eters describing orientation and position of each camera with
regard to selected reference camera.

Our external calibration algorithm can be summarized as
follows:

(a) image acquisition and sub-pixel marker detection on
multiple cameras

(b) composition of adjacency matrix for vision graph de-
scribing interconnections between the cameras (e.g. num-
ber of common points)

(c) computation of fundamental F and essential matrix E
with RANSAC

(d) essential matrix decomposition into rotation and trans-
lation parameters defined up to a scale factor λ

(e) determination of the scale factor λ through triangula-
tion and LM optimization

(f) optimal path search using Dijkstra algorithm [12]
(g) global optimization of the parameters using sparse bun-

dle adjustment [13]

In the remainder of this section we described in detail
each of the calibration steps. The algorithms for intrinsic and
extrinsic calibration were both implemented using C++ and
OpenCV [14] computer vision library.



3.1. Camera Model and Intrinsic Calibration

In the first step of calibration, the cameras are internally cali-
brated using Tsai algorithm [10, 11]. A planar checkerboard
target is placed in different positions and orientations to gen-
erate a set of points for homography calculation. Initial guess
of the internal parameters (i.e. focal length, optical center
and distortion) is optimized using Levenberg-Marquardt al-
gorithm [13].

We use the standard pinhole camera model while consid-
ering radial and tangential distortion models [15]:

xi =
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⎣
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⎦
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(1)

xi = KfΠ0GXi (2)

The model in Eq. 2 represents the transformation from a
homogeneous 3D point Xi ∈ R

4 seen by camera to the cor-
responding image pixel coordinate xi defined on the image
plane. Matrix Kf ∈ R

3×3 represents camera matrix, con-
sisting of the focal length (fx, fy), optical center (cx, cy) and
skew angle parameter α. In most cases α can be set to 1. The
matrix Π0 ∈ R

3×4 is the standard projection matrix. The ma-
trix G ∈ R

4×4 contains rotational matrix and position of the
camera center from the object coordinate system origin. The
lens distortion is modeled by two parameters of radial distor-
tion (k1, k2) and two parameters of tangential distortion (p1,
p2). In total, the camera model used in this paper consists of 8
internal parameters. All of the internal parameters have been
estimates in our first step of calibration.

3.2. Marker Detection

The accuracy of marker detection can significantly influence
calibration quality. Marker detection has to be reliable and
robust. Detection can be influenced by CCD noise, uniformity
of the background, other sources of illumination in the scene
and poor thresholding of the captured images [16].

For the experiments on the real cameras, we have selected
several cameras of our multi-camera system consisting of 48
cameras and 12 computers (clusters) [17]. The marker de-
tection was implemented in real-time on each camera clus-
ter. The camera parameters for shutter and gain were reduced
to 5 ms and 3 dB respectively. LED markers were detected
by thresholding the image and using ellipse fitting algorithm
to eliminate any large or oddly shaped objects. To calculate
sub-pixel marker center we used squared gray scale centroid
method [16] where the sub-pixel marker center is determined
by a centroid of the intensities of the detected marker. The
input for the algorithm was the approximate center of the
marker and the bounding box determined by the ellipse fit-

ting algorithm. The sub-pixel marker center was calculated
as follows:

x̄ =
m∑

j=1

n∑
i=1

i · I2
i,j/

m∑
j=1

n∑
i=1

I2
i,j (3)

where Ii,j denotes intensity value of the i,j-th pixel loca-
tion; and m and n denote the dimensions of the bounding box
around the marker. The marker detection algorithm allowed
robust tracking in illuminated conditions.

3.3. Pairwise Calibration

Given two images from calibrated cameras, camera pose and
position of the points in space can be obtained through epipo-
lar geometry. First, the effects of the camera parameters are
compensated by undistorting and normalizing the image points
on all cameras. Essential matrix is then calculated from epipo-
lar geometry constraints [15]. Through the essential matrix
decomposition, pose of the camera can be obtained (up to a
scale factor). Finally, the scale factor can be determined by
the constraint between the two markers on the calibration bar.

3.3.1. Epipolar Geometry and Essential Matrix

The epipolar geometry is based on the fact that each 3D point
Xi observed by two cameras and its two image projections
xi1 and xi2 lie on the same plane [18]. The geometric re-
lationship between the two cameras can be described by the
fundamental matrix F with the following relation:

xT
i2Fxi1 = 0 (4)

The fundamental matrix depends on the internal parame-
ters of the cameras (K1, K2) and the pose between the two
cameras (R, T). For the calibration of a camera pair, the
fundamental matrix in our algorithm is obtained using nor-
malized 8-point algorithm implemented in OpenCV [14].

When describing the relationship between normalized im-
age coordinates (x̂ = K−1x), essential matrix (E) can be
obtained from the fundamental matrix:

F = K−T
2 EK−1

1 and E = KT
2 FK1 (5)

The following relationships between the image points can
be defined for the essential matrix:

x̂T
i2Ex̂i1 = 0 (6)

In the subsequent text we omit symbol ’ˆ ’ and assume
that the image coordinates have been normalized, unless oth-
erwise stated.

The essential matrix is defined as follows [18]:

E = [t]×R = T̂R (7)



where T̂ represents antisymmetric matrix of position vec-
tor t describing the relative position between the left and right
camera coordinate system. Unlike the fundamental matrix
with 7 degrees of freedom, the essential matrix has only five
degrees of freedom. Important property of the essential ma-
trix is that the singular value decomposition (SVD) results in
two equal singular values and the third one is zero. This prop-
erty is used for decomposition of essential matrix where four
possible solutions for (R, t) are obtained [18]:

(SVD)E = UΣV with Σ = diag {σ, σ, 0} (8)

The four solutions obtained by the essential matrix de-
compositions are as follows:

(T̂1,R1) = (URZ(+π
2 )ΣUT ,URT

Z(+π
2 )VT )

(T̂2,R2) = (URZ(−π
2 )ΣUT ,URT

Z(−π
2 )VT )

(9)

where RZ(.) represents 3 by 3 matrix defining the rotation
around the z-axis for ±π

2 . The two solutions are referred
to as ”twisted pair” while their geometric interpretation re-
sults in the first two solutions are obtained by reversing the
translation vector and the other two solutions are obtained by
rotation through 180◦ about the line joining the two camera
centers. In only one of the solutions a reconstructed point Xi

will be in front of the both cameras (i.e. it has positive depth
coordinate). Although testing with a single point should be
sufficient, in practice, it turns out that due to noise testing with
all points gives most reliable results in any position between
the two cameras. Due to the nature of the essential matrix, the
vector t can only be obtained up to a scale factor.

To optimize the results for R and t, we apply LM al-
gorithm for bundle adjustment [19] with three rotational and
three position parameters as input. The following function is
minimized [15]:

Φ(R,T) =
N∑

j=1

(x̃jT
2 T̂Rx̃jT

1 )2

‖ê3T̂Rx̃j
i‖2

+
(x̃jT

2 T̂Rx̃jT
1 )2

‖x̃jT
2 T̂RêT

3 ‖2
(10)

where ê3 is the anti-symmetric matrix of vector e3 = [0, 0, 1]T .
The expression (10) is based on the properties of the epipolar
geometry: xjT

1 e3 = 1, xjT
2 e3 = 1 and xT

2 Ex1 = 0.
From the essential matrix decomposition, the position vec-

tor t is obtained up to a scale factor λ. Next, we obtain the
value of λ from known geometry of the LED markers [8].

3.3.2. Scale Factor Determination

The unknown scale factor λ is obtained from the dimension of
the distance between the two LED markers. Pair of points X̂1

and X̂2 in the normalized 3D space can be reconstructed from
their respective images using stereo triangulation while their
coordinates in the absolute 3D space (X1 and X2) remain
unknown. The scale factor λ can be determined from their

distance in normalized space d̂ and the actual length of the
calibration bar d0 as follows:

(X1 − X2) = λ(X̂1 − X̄2) ⇒ λ =
d0

d̂
(11)

Due to presence of noise, the 3D reconstruction of the
point pairs will not be precise. To improve the accuracy we
calculate the mean value of the scale factor λ̄ over N frames:

λ̄ =
d0

N

N∑
i=1

1
di

(12)

Finally, we implement non-linear optimization of the ob-
tained solution using LM algorithm [13] where we minimize
the error between calculated distance d and actual bar length
d0:

δ(λ) =
N∑

i=1

d0 − ‖X1i(λ) − X2i(λ)‖ (13)

Fig. 1. Projection of i-th frame onto three image planes. The marker
coordinates are parametrized using initial point Xi1 and normalized
direction ni.

3.4. Vision Graph

We represent the structure of the multi-camera system using
tools of graph theory [12] and vision graphs [1]. The lay-
out of M cameras is represented by graph G consisting of M
vertices Vi which represent individual cameras. In order for
the global calibration to succeed, the vision graph has to be
connected. In terms of graph theory, this means that all pairs
(i, j) of vertices are connected by paths (i.e. there is no iso-
lated vertices inside the graph) [20]. We describe the overlap
between different camera pairs by assigning weights to the
graph edges. The weights ωij correspond to 1

Nij
where Nij

represents number of common points between the two cam-
eras. If there are no common points between two cameras,
value 0 is assigned to the weight. To describe the graph struc-
ture, adjacency matrix A(G) with weights ωij is defined. The



weights ωij can be further modified to prioritize certain fea-
tures of the cameras, such as closeness to the reference cam-
era, accuracy of the internal calibration, or distribution of the
captured image points. The adjacency matrix is updated after
performing pairwise calibration and eliminating some of the
points by RANSAC algorithm.

After the relative pose between all the camera pairs has
been calculated, the location of any camera with regard to ar-
bitrary selected reference camera can be computed as long
as the graph remains connected. When calculating the trans-
formations between the cameras, we try to find the optimal
path to reduce the propagation of error. Two criteria should
be considered for optimal transformation: (1) the calibration
of a camera pair is more accurate with more common points
between the cameras and (2) the number of transformations
between different camera coordinate systems should be min-
imal. To find the optimal path for transformation from the
reference camera to all the other cameras, we employ Dijk-
stra’s shortest path algorithm [12] on the vision graph. The
algorithm solves the single-source shortest path problem for a
graph with non negative weights. The algorithm succeeds as
long as the graph is connected.

Using the shortest path from the reference camera to each
camera, we can calculate the absolute position of each camera
(1). Let i, j, and k be indices of consecutive cameras on the
path found in graph G. From pairwise calibration, the trans-
formations from i to j and from j to k are denoted as (Rij ,
tij) and (Rjk, tjk). The transformation from i to k can be
calculated as follows:

tik = tij + Rijtjk and Rik = RijRjk (14)

If a path from the reference camera has a length longer
than two, the equation (14) is applied sequentially to cover
the entire path.

3.5. Global Optimization

The solution described in the previous section was obtained
using pairwise calculations of camera pose and is therefore
prone to errors. The final goal of the calibration is to ob-
tain the pose of each camera relative to the reference cam-
era. The captured 3D points from the calibration bar can be
seen as a 3D structure viewed by multiple cameras. Given
3D point coordinates in the reference camera frame and the
initial pose of the cameras, one can optimize the reprojection
error using bundle adjustment (BA) algorithm which simulta-
neously refines the 3D structure and the camera parameters.
The algorithm for each 3D point calculates reprojection er-
ror to all camera images and adjusts parameters to minimize
the error between the reprojected and captured image point.
The optimization can be effectively solved using Levenberg-
Marquardt (LM) nonlinear optimization. Due to sparse nature
of the problem, where there is lack of interaction between

different 3D points and cameras, sparse bundle adjustment
(SBA) can be applied [19].

The SBA algorithm assumes we have n 3D points which
are seen by m cameras. Projection of i-th point on camera
plane j is denoted as xij . Each camera can be parametrized
by vector aj and each 3D point i by vector bi. Function Q()
defines projection of the 3D point onto camera image plane
using the camera model from Eq. 2. Function d(x,y) de-
notes Euclidean distance between image points represented
by x and y. Bundle adjustment minimizes the following re-
projection error:

min
aj ,bi

n∑
i=1

m∑
j=1

d(Q(aj ,bi),xij)2 (15)

The non-linear minimization problem is defined by the pa-
rameter vector P ∈ R

M , consisting of all camera pose param-
eters, and the measurement vector X ∈ R

N , consisting of the
measured image points across all cameras.

To obtain the initial position of each 3D point in the refer-
ence camera coordinate system, we use pair-wise stereo trian-
gulation to obtain the position of points visible to a particular
camera pair. Next, we calculate average position of the 3D
points over the pairs that capture the point since the projec-
tions from different camera may not coincide into the same
point. To remove outliers, we check the distance between the
two 3D points of the calibration bar. The threshold for dis-
tance error was set at 1%

For n freely distributed 3D points in the scene and m
cameras, the dimensions of the parameter space are M =
n×3+6×(m−1) (3 coordinates for each 3D point, and 3 ro-
tational and 3 translational parameters) and the dimensions of
the measurement space are N ≤ n× 2 since all cameras may
not see each 3D point. For example, 500 3D points observed
by 5 cameras will be defined by 1524 parameters while the
image projection space will be ≤ 5000.

The number of the input parameters can be reduced if we
take into account the rigid connection between each 3D point
pair on the calibration bar. The position of the two 3D points
can be described by the starting point Xi,1 while the location
of the second point Xi,2 is defined by the normalized direc-
tion vector ni between the two points and their distance d0

which is a priori known (Figure 1). The normalized direction
vector can be parameterized as follows:

ni =
Xi,2 − Xi,1

‖Xi,2 − Xi,1‖ =

⎡
⎢⎣

nix√
1 − n2

ix − n2
iy

n2
iz

⎤
⎥⎦ . (16)

The coordinate niy is expressed by the other two coordi-
nates since the calibration bar is kept close to vertical direc-
tion and its value will therefore be close to 1 and nix and niz

will be balanced numbers. Inside the LM loop we enforce the
condition n2

ix + n2
iz ≤ 1 to keep the direction vector normal-

ized. Finally, we can calculate the second coordinate of the



point bar as follows:

Xi,2 = Xi,1 + d0ni (17)

Above parametrization will decrease the parameter space
size to M = n

2 ×5+6×(m−1). In case of the numerical ex-
ample given above, the number of parameters would decrease
from 1524 to 1274. The dimensions of the measurement vec-
tor remains the same. The equation (15) is applied for re-
projection minimization. The parameterization additionally
constraints the LM optimization to keep the distance between
the two 3D points constant. In subsequent text we refer to the
use of above parametrization as the constrained SBA.

Fig. 2. Simulated setup of five cameras and generated 3D
points used for the calibration.

4. RESULTS

4.1. Simulated Data

The performance of the algorithm was analyzed on simulated
setup of five cameras. The cameras were arranged as shown in
Figure 2. For clarity and due to limitation of space in this pa-
per, all the cameras were positioned in the same plane. The in-
ternal parameters of the cameras were randomly chosen from
five actual cameras of our multi-camera setup which were cal-
ibrated using checkerboard. The internal parameters included
four parameters of camera matrix and four parameters for ra-
dial and tangential distortion.

For the experiment we have generated 310 positions of the
calibration bar with two markers positioned at the distance of
314 mm from one another. Figure 3 shows the vision graph
generated from the calibration with camera #3 chosen as the
reference camera. Due to a small overlap between camera
#3 and camera #4, the optimal transformation path for this

camera was 3-2-4. Too few points were also found between
cameras #3 and #5, therefore alternative path 3-2-5 was found
by the path-searching algorithm.
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Fig. 3. Vision graph and the optimal path from reference cam-
era #3 obtained from the above setup. Numbers indicate num-
ber of common points between cameras and their correspond-
ing weights.

Next, Gaussian noise with mean value 0 and standard de-
viation σ was added to the image points. The noise level on
image size 640 × 480 was varied from 0 to 0.7 pixels in steps
of 0.1 pixels. At each noise level, cameras were calibrated un-
der two conditions, with unconstrained and constrained SBA.
We analyzed the effect of noise on position and orientation
of the cameras obtained from the proposed calibration algo-
rithm.

The results of the noise analysis in Figure 4(a) show the
relative error in calibrated position of the cameras. The error
was calculated as percentage of the root mean square error be-
tween calibrated camera position and its true position in 3D
space. Parameterization of the two markers with 3D point
and normalized direction improved the robustness and accu-
racy of the algorithm. The errors are below 0.2% for noise
levels of 0.6 pixels and under. With increasing noise levels,
the RANSAC algorithm, whose threshold was set at 1 pixel,
removes too many points to successfully perform the calibra-
tion. Figure 4(b) shows the absolute error in the orientation
with regard to the vertical axis of the reference camera for dif-
ferent noise levels. The difference between unconstrained and
constrained SBA algorithm is evident mainly for cameras #1
and #2, which are oriented at 45 and 90 degrees, respectively,
with regard to the reference camera. The corresponding rel-
ative error for these two cameras is between 0.05 and 0.1%.
The corresponding image reprojection errors for different lev-
els of noise are listed in Table 1.
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Fig. 4. Camera position and orientation errors for different
noise levels as compared between unconstrained (u) and con-
strained (c) sparse bundle adjustment.

4.2. Real Data

The experiment with the real data was performed on 12 Drag-
onfly firewire cameras with the image resolution of 640 ×
480 pixels. Two of the cameras (#7 and #11) had 4 mm
lens installed while the rest of the cameras had 6 mm lenses.
The size of the setup was about 4.0 m × 4.0 m × 2.5 m,
with the cameras positioned at different vertical levels and
various orientations. Due to small or no overlap between
some of the cameras, it would be difficult to deploy a physical
calibration object to calibrate all the cameras. The cameras
were synchronized using external trigger to capture images
with 15 frames per second. The cameras were first internally
calibrated using the checkerboard with 10 × 15 number of
squares with 40 mm in size. The checkerboard was placed
in 20 different positions and orientations. Tsai calibration al-
gorithm was used to obtain the intrinsic parameters for each
camera.
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Fig. 5. Vision graph obtained for 12 real cameras with the optimal
transformation path shown with thick line.

For external calibration we used a rigid metal bar with two
LED markers attached on each end. The distance between the
markers was measured at 317 mm using a tape measure be-
fore the calibration. The LEDs were emitting in visible and
infra-red spectrum. The marker locations were extracted in
real time and stored locally. Data analyzed in this paper con-
sisted of 4738 collected 3D points. As we have demonstrated
on the synthetic camera setup, the calibration can be accu-
rately and robustly performed with smaller number of points.
Implementation using C++ and OpenCV library and the use
of sparse bundle adjustment makes our calibration algorithm
fast and efficient. For the data set presented in this paper, the
complete external calibration of 12 cameras, took 14 seconds
on a personal computer with Intel Xeon 3.20 GHz processor
and 1 GB of memory.

Figure 5 shows the vision graph and the corresponding op-
timal transformation path as obtained from the collected data
points. The vision graph weights were calculated based on
the number of overlapping points between the camera pairs.
Camera #3 was chosen as the reference camera since its po-
sition and orientation correspond with the floor level. The

Noise level σ Image reprojection error
0.0 0.0417
0.1 0.1150
0.2 0.2083
0.3 0.2968
0.4 0.3937
0.5 0.4958
0.6 0.6172
0.7 0.6750

Table 1. Mean image reprojection error in pixels across five
cameras for different noise levels σ.



results of the external calibration are shown in Figure 6.

Fig. 6. A three-dimensional layout of 12 real cameras after the
calibration.

To assess the accuracy of the calibration, we used mean
reprojection error obtained on each camera (Figure 7). The
reprojection error on all cameras was below 0.4 pixels. The
cameras whose position and orientation were obtained by in-
direct transformation path with the reference camera had no
significantly different reprojection errors as compared to the
cameras calibrated directly with the reference camera. The
mean reprojection error between all the cameras was 0.3391
pixels with the standard deviation of 0.0365 pixels. Compared
to the results obtained for the synthetic camera setup, this re-
projection error would correspond to the image noise of about
σ = 0.4 pixels.
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Fig. 7. Reprojection error in pixels on each camera plane as ob-
tained after global optimization. The reprojection errors between
the cameras show no significant difference between the cameras cal-
ibrated by indirect and direct transformation path.

The accuracy of the external calibration depends on sev-
eral factors: (a) accuracy of internal camera calibration, (b)
accuracy of marker detection algorithm, (c) number of com-
mon points and their distribution on image plane, and (d) dis-
tance between the two LED markers. For metric accuracy, the
measured length of the calibration bar is critical. The length
of the calibration bar should be as large as possible for the
length to be reconstructed with adequate accuracy, however,
the projection of the marker points should cover most of the
image plane (i.e. center and edge regions) to obtain reliable
fundamental matrix. The length of the bar was therefore cho-
sen in such a way that its projected length represented about
1/3 of the image height.

5. CONCLUSIONS

In this paper we have presented a robust and efficient cam-
era calibration method which can be applied to distributed
smart cameras. The calibration is based on virtual calibration
object created by LED markers. The marker detection can
be efficiently implemented on smart cameras since it requires
minimal image processing. The marker location data can be
stored on-board the cameras or sent through the network to
a server. The method does not require the scene to be dark.
Color information can be included in the marker tracking to
increase the robustness in case of environment with different
light sources.

The proposed vision graph analysis allows calibration of
camera setups in which all the cameras do not share common
working volume. The only requirement is for the cameras to
have pairwise overlap. We apply weights to graph edges to
describe relationship between camera pairs and find optimal
path transformation to minimize the error. In our future work
we plan to explore how different parameters (e.g. distribution
of points, closeness to reference camera) used for weight cal-
culation affect accuracy of the calibration and error propaga-
tion. The major advantage of using the vision graph is that the
algorithm does not need any prior knowledge of approximate
camera locations, allowing for fast and robust calibration of
distributed camera systems. Our algorithm, in contrast to [3],
also reconstructs metric information on camera positions.

Our novel parameterization of the two-marker approach
adds robustness to the algorithm allowing more accurate cam-
era calibration with two-point target in presence of noise as
we have demonstrated in our experiment with the synthetic
data. The results obtained on the real camera setup show
that our approach compensates for error propagation when the
path transformation includes two to three nodes. No signifi-
cant difference in reprojection error was found between the
two groups of cameras.

Vision graph based approach described in this paper could
also be applied to address video segmentation in structure
from motion problems [21] or mobile robot localization [22]
where robot position can be determined from two pairs of



views of the same scenery.

6. REFERENCES

[1] W.E. Mantzel, H. Choi, and R.G. Baraniuk, “Distributed
camera network localization,” 38th Asilomar Confer-
ence on Signals, Systems and Computers, vol. 2, pp.
1381–1386 Vol.2, 7-10 Nov. 2004.

[2] B.D. Olsen and A. Hoover, “Calibrating camera network
using domino grid,” Pattern Recognition, vol. 34, pp.
1105–1117, 2001.

[3] T. Svoboda, D. Martinec, and T. Pajdla, “A convenient
multicamera self-calibration for virtual environments,”
Presence, vol. 14, no. 4, pp. 407–422, 2005.

[4] Z. Cheng, D. Devarajan, and R.J. Radke, “Determining
vision graphs for distributed camera networks using fea-
ture digests,” EURASIP Journal on Advances in Signal
Processing: Special Issue on Visual Sensor Networks,
p. 11, 2007.

[5] Z. Zhang, “Camera calibration with one-dimensional
objects,” Tech. Rep. MSR-TR-2001-120, Microsoft Re-
search, August 2002.

[6] M. Machacek, M. Sauter, and T. Rsgen, “Two-step cal-
ibration of a stereo camera system for measurement in
large volumes,” Measurement Science and Technology,
vol. 14, pp. 1631–1639, 2003.

[7] X. Cheng, J. Davis, and P. Slusallek, “Wide area cam-
era calibration using virtual calibration objects,” in Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2000), 2000.

[8] N.A. Borghese and P. Cerveri, “Calibrating a video cam-
era pair with a rigid bar,” Pattern Recognition, vol. 33,
no. 1, pp. 81–95, 2000.

[9] I. Ihrke, L. Ahrenberg, and Marcus M. Magnor, “Ex-
ternal camera calibration for synchronized multi-video
systems,” in Proceedings of 12th International Con-
ference on Computer Graphics, Visualization and Com-
puter Vision 2004, Plzen, Czech Republic, February
2004, vol. 12, pp. 537–544.

[10] R.Y. Tsai, “A versatile camera calibration technique
for high-accuracy 3d machine vision metrology using
off-the-shelf tv cameras and lenses,” IEEE Journal of
Robotics and Automation, vol. RA3, no. 4, pp. 323–344,
1987.

[11] D. Zhang, Y. Nomura, and S. Fujii, “Error analysis and
optimization of camera calibration,” in Proceedings of
IEEE/RSJ International Workshop on Intelligent Robots
and Systems (IROS 91), Osaka, Japan, 1991, pp. 292–
296.

[12] J.A. Bondy and U.S.R. Murty, Graph Theory with Ap-
plications, Elsevier Science Publishing Co., Inc., New
York, 5th edition, 1982.

[13] M.I.A. Lourakis, “levmar: Levenberg-marquardt non-
linear least squares algorithms in C/C++,” [web page]
http://www.ics.forth.gr/ lourakis/levmar, July 2004.

[14] “Opencv: Open computer vision library,” [web page]
http://sourceforge.net/projects/opencvlibrary, Novem-
ber 2006.
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